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1. 

The problem of vibration of a beam carrying oscillators is very interesting from an
engineering point of view. Free vibration of such systems was discussed in papers [1–7].
The authors of the papers presented various methods of solution of the problem and
investigated the influence of an attached oscillator on vibrations of the combined systems
considered.

The effect of concentrated masses elastically mounted to a beam on fundamental
frequency of the vibration system was investigated by Ercoli and Laura in reference [1].
The solution of the problem was found by expanding the deflection in terms of
characteristic beam functions and by using the Ritz method as well. Gürgöze [2] dealt with
a problem of free vibration of a clamped–free beam with an end mass to which a spring
mass system is attached. He used the Lagrange multipliers method. Free vibration of a
system consisting of a beam and a rigid body elastically mounted to the beam by means
of two translational springs was analyzed by Jen and Magrab [3]. The authors used the
Laplace transform with respect to the spatial variable. The spectral problem of a free–free
beam with oscillators was reported by Pesterev and Tavrizov [4]. The static Green
functions were used in the structural analysis method. The dynamic Green function was
applied by Bergman and Hyatt [5] and by Kukla and Posiada<a [6]. The papers [1–6] are
devoted to the free vibration problems of a combined system consisting of oscillators and
a Bernoulli–Euler beam. The Timoshenko beam theory was applied by Rossi et al. [7]. In
this paper, an analytical solution was found by dividing the beam into two segments and
using the compatibility conditions at the dividing point.

A system of a beam with rigidly attached mass can be treated as a particular case of
a beam with an elastically mounted mass: if the constant of the translational spring
connecting a concentrated mass with a beam tends to infinity, a system of the beam with
rigidly attached mass is obtained. Likewise, a beam with an elastic support can be treated
as a particular case of a beam with an elastically mounted mass [6]. Moreover, the equation
for a Bernoulli–Euler beam may be obtained from the Timoshenko equations. Therefore
the solution of the problem regarding free vibrations of a Timoshenko beam with
oscillators comprises a wide range of issues.

The present note deals with the problem of free vibration of a combined system
consisting of a Timoshenko beam and multi-mass oscillators. The formulation and
solution of the problem comprises the systems of the beam with many oscillators, which
are attached to it at arbitrary points. The solution is found by applying the Green function
method. The effect of an oscillator on the frequencies of the combined system is
investigated. Exemplary numerical results show the influence of the location of two- and
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three-degree-of-freedom oscillators attached to a cantilever beam on a few first frequencies
of the vibration systems.

2. 

Consider a Timoshenko beam with N multi-mass oscillators attached to it at points xj ,
j=1, 2, . . . , N. The jth oscillator consists of nj spring–mass systems combined in series
(see Figure 1). For the beam, the governing coupled differential equations for the total
deflection y and the bending slope c, are

K'AG012y
1x2 −

1c

1x1− rA
12y
1t2 = s

N

j=1

k1j{y(xj , t)− z1j(t)} d(x− xj), (1)

EI
12c

1x2 +K'AG01y
1x

−c1− rI
12c

1t2 =0, (2)

where A is the area of the cross-section, E is the modulus of elasticity, G is the modulus
of rigidity, I is the moment of inertia of the cross-section, K' is a factor depending on the
shape of the cross-section, kij are the stiffness coefficients of the translational springs, r is
the mass density of the beam material and d( ) is the Dirac delta function. The
displacements zij(t) of the masses mij for i=1, 2, . . . , nj , j=1, 2, . . . , N, are governed by
the differential equations

m1j d2z1j(t)/dt2 + k1j{z1j(t)− y(xj , t)}+ k2j{z1j(t)− z2j(t)}=0, (3)

mij d2zij(t)/dt2 + kij{zij(t)− zi−1j(t)}+ ki+1j{zij(t)− zi+1j(t)}=0,

i=2, 3, . . . , nj −1, (4)

mnj j d
2znj j(t)/dt2 + knj{znj j(t)− znj −1j(t)}=0. (5)

In order to find the natural frequencies of the system, v, one assumes that

y(x, t)=Y�(x) cos vt, c(x, t)=C(x) cos vt, zij(t)=Z�ij cos vt. (6)

Figure 1. A sketch of the system considered: the jth multi-mass oscillator attached at the beam point xj .
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Substituting equations (6) into equations (1)–(5) and introducing the dimensionless
quantities, one obtains

d2Y
dj2 −

dc

dj
+ s2b4Y= s2 s

N

j=1

K1j{Y(jj)−Z1j) d(j− jj), (7)

s2 d2C

dj2 +
dY
dj

+(r2s2b4 −1)C=0, (8)

−b4Z1j +V4
1j{Z1j −Y(jj)}+ g1jV

4
1j(Z1j −Z2j)=0, (9)

−b4Zij +V4
ij(Zij −Zi−1j)+ gijV

4
ij(Zij −Zi+1j)=0, i=2, 3, . . . , nj −1, (10)

−b4Znj j +V4
nj j(Znjj −Znj −1j)=0, (11)

where j= x/L, jj = xj/L, Y=Y�/L, Zij =Z�ij/L, b4 = (rAL4/EI)v2, r2 = I/AL2,
s2 =Er2/K'G, gij = ki+1j/kij , K1j = k1jL3/EI, Mij =mij/rAL, V4

ij =Kij/Mij and L is the length
of the beam.

The expression Y(jj)−Z1j , which occurs in equation (7), may be written by using
equations (9)–(11) in the form

Y(jj)−Z1j =Qnj jY(jj). (12)

Here the Qnj j for nj =1, 2 and 3, are

Q1j =1+
1
l1j

, Q2j =1+
1

l1j − g1j(1+1/l2j)
,

Q3j =1+
1

l1j − g1j [1+1/{l2j − g2j(1+1/l3j)}]
, (13)

where lij =(b4/V4
ij)−1. The expressions Q2j and Q3j can be written symbolically, by

applying the notation used for continued fractions [8], as

Q2j =1+
1

l1j − g1j +
−g1j

l2j
, Q3j =1+

1
l1j − g1j +

−g1j

l2j − g2j +
−g2j

l3j
.

Generally, one has

Qnj j =1+
1

l1j − g1j +
−g1j

l2j − g2j +
−g2j

l3j − g3j +
· · ·

−gnj −1j

lnj j
. (14)

Equations (7) and (8) can be now written in the matrix form

LY=F, (15)
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where

d2

dj2 + s2b4 −
d
dj

L=G
G

G

K

k
d
dj

s2 d2

dj2 + r2s2b4 −1
G
G

G

L

l
,

Y(j)=$Y(j)
C(j)%, F(j)=$FY(j)

0 %, (16)

and FY(j)= s2 sN
j=1 K1jQnj jY(jj) d(j− jj).

The solution of equation (15) can be expressed by [10]

Y(j)=g
1

0

GT(j, h)F(h) dh. (17)

Here GT(j, h) denotes the transpose of the Green function matrix

G(j, h)=$gf
Y(j, h)

gf
C(j, h)

gm
Y (j, h)

gm
C(j, h)%,

which satisfies the equation

LG=E d(j− h), (18)

where E is the 2×2 unit matrix. From the equation (17) results, the functions Y(j) and
C(j) can be written in the forms

Y(j)= s2 s
N

j=1

K1jQnj j g
f
Y(j, jj)Y(jj), C(j)= s2 s

N

j=1

K1jQnj jg
m
Y (j, jj)Y(jj). (19, 20)

By substituting j= ji (i=1, 2, . . . , N) successively into equation (19), the set of N
homogeneous, linear equations with respect to displacements Y(ji), is obtained. The
determinant of the coefficient matrix of this equation system is set equal to zero yielding
the frequency equation. This equation appears in the form

=aij(b)==0, (21)

where aij(b)= s2K1jQnj jg
f
Y(ji , jj)− dij , =aij = denotes the determinant of the matrix [aij ] and

dij is the Kronecker delta. Equation (21) is then solved numerically.

3.   

In the recent paper by Lueschen et al. [9] the closed form expressions for Green functions
of an uniform Timoshenko beams are given. The functions are obtained for six cases of
the end attachments of the beam by using the fourth order differential equation. Taking
into consideration the coupled differential equations of motion of the Timoshenko beam,
one can derive a functional matrix (Green function matrix), which plays the same part as
the Green function with reference to one equation. This approach is presented below.
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The Green function matrix as a solution of equation (18) can be written as a sum of
two matrices,

G=Gh +Gp , (22)

where Gh is the general solution of homogeneous equation, obtained from equation (18),
and Gp is the particular solution of this equation. The frequency equation (21) is expressed
by one element of the Green function matrix. That is why further consideration for the
first column of the matrices G, Gh and Gp is presented. The functions gf

Y(j, h) and gf
C(j, h)

with respect to j satisfy the same boundary conditions as the functions Y and C,
respectively. Depending on the attachments of the beam ends, the conditions for j=0 and
j=1, are: Y=0, dC/dj=0 for a simply supported end; Y=0, C=0 for a clamped end;
dY/dj−C=0, dC/dj=0 for a free end; dY/dj−C=0, C=0 for a sliding end.

The column-matrix Gh appears in the form

Gh =$ cosh a1j

a1 sinh a1j%C1 +$ sinh a1j

a1 cosh a1j%C2 +$ cos a2j

−a2 sin a2j%C3 +$ sin a2j

a2 cos a2j%C4, (23)

where C1, C2, C3, C4 are integral constants, a1 = (1/a1)(a2
1 + s2b4), a2 = (1/a2)(a2

2 − s2b4),
a1 = (1/z2)[−b4(r2 + s2)+zD]1/2, a2 = (1/z2)[b4(r2 + s2)+zD]1/2 and D= b4[b4(r2 −
s2)2 +4]. Here the case is considered, when a1 is a real value (i.e., b4 Q 1/r2s2).

The column-matrix Gp is assumed in the form

Gp =$gfp
Y (j− h)

gfp
C (j− h)%H(j− h), (24)

where H( ) is the Heaviside function. The functions gfp
Y (z) and gfp

C (z) are determined by
substituting equation (24) into equation (18). These functions are as follows:

gfp
Y (z)=

1
a1a2 − a2a1

(a2 sinh a1z− a1 sin a2z), (25)

gfp
C (z)=

a1a2

a1a2 − a2a1
(cosh a1z−cos a2z). (26)

The integral constants C1, C2, C3 and C4 are then determined from the boundary
conditions. For instance, the function gf

Y(j, h) corresponding to a clamped–free beam for
b4 Q 1/r2s2, assumes the form

gf
Y(j, h)= (cosh a1j−cosh a2j)C1 +0sinh a1j−

a1

a2
sin a2j1C2 + gfp

Y (j− h)H(j− h),

(27)

where

C1 =
1
D $(a1 sinh a1 + a2 sin a2)Z1(1− h)−0 1

a1a1
cosh a1 +

1
a2a2

cos a21Z2(1− h)%,
C2 =

1
D $−0a1 cosh a1 +

a2

a1
a2 cos a21Z1(1− h)+01

a1
sinh a1 −

1
a2

sin a21Z2(1− h)%,
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D=(a1a2 − a2a1)$2+0a1

a2
−

a2

a11 sinh a1 sin a2 +0a1a1

a2a2
−

a2a2

a1a11 cosh a1 cos a2%,
Z1(z)=

a2

a1
cosh a1z+

a1

a2
cos a2z and Z2(z)= a2(cosh a1z−cos a2z).

If b4 q 1/r2s2, then the function gf
Y(j, h) can be obtained from equation (27) by

using the following relations: a1 = jā1, cosh a1z=cos ā1z, j sinh a1z=−sin ā1z, where
ā1 = (1/z2)[b4(r2 + s2)−zD]1/2 and j=z−1.

It can be noticed that limr:0 s2gf
Y(j, h)=−G(j, h), where G(j, h) is the Green

function corresponding to a Bernoulli–Euler beam. These Green functions are stated in
references [5, 6].

4. 

The natural frequencies of the considered system, bn , are obtained from frequency
equation (21). The equation for a case when a single oscillator is attached to a beam
(N=1), appears in the form

s2K11Qn11g
f
Y(j1, j1)−1=0, (28)

where Qn11 for n1 =1, 2 and 3 (number of degrees of freedom of the oscillator), is
given by equation (13), and for arbitrary n1 by equation (14). If K11 tends to infinity in
equation (28) for n1 =1, then the frequency equation obtained corresponds to a system
of a beam with rigidly attached mass. This equation has the form

b4M11s2gf
Y(j1, j1)+1=0. (29)

Moreover, when M11:a, then Q11:1. Taking into this account in equation (28), one
obtains the frequency equation for a beam with intermediate elastic support:

K11s2gf
Y(j1, j1)−1=0. (30)

The frequency equation for N=2 has the form

(s2K11Qn11g
f
Y(j1, j1)−1)(s2K12Qn22g

f
Y(j2, j2)−1)−s4K11K12Qn11Qn22[g

f
Y(j1, j2)]2 =0. (31)

Consider now a single oscillator attached at point j1 to a clamped–free beam. If j1 =0
(clamped end of the beam), then the oscillator is grounded. Using equations (27) and (28)
one finds that the frequency equation for this oscillator is: 1/Qn11 =0. The equation for
the two degree-of-freedom oscillator (n1 =2), has the form (the second subscript is
omitted):

b8 − [(g1 +1)V4
1 +V4

2]b4 +V4
1V

4
2 =0. "32)

An elastic element or a concentrated mass attached to a beam causes a change of its
vibration frequencies. It is well known that a rigidly attached mass decreases the
frequencies of a beam, and an elastic support leads to increase of the frequencies. In the
case of a beam with an elastically mounted mass, the frequencies higher than the
spring–mass frequency are increased, and the lower ones are decreased (except at discrete
points when the frequencies are unchanged) [11]. This result can be shown by comparing
equation (28) with equations (29) and (30): a spring–mass system added to a beam
alternates the frequencies of the original system in the same way as a rigidly attached mass
does when Q11 Q 0 or an elastic support when Q11 q 0. On the basis of equation (13a),
Q11 Q 0 for 0Q bQV1 and Q11 q 1 for bqV1 are obtained. Therefore frequencies lower
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than V1 are decreased, and those higher than V1 are increased, and this is in agreement
with reference [11].

Likewise, a two-degree-of-freedom oscillator attached to a beam at any point causes an
alteration of frequencies of a combined system depending on the sign of the expression
Q21. The inequality Q21 q 0 is satisfied for b*1 Q bQ n and bq b*2 , where
b*1,2 = 4z1

2[n
4 +V4

1 3z(n4 +V4
1)2 −4V4

1V
4
2] are the frequencies of the grounded oscillator

(roots of equation (32)) and n= 4zg1V
4
1 +V4

2
. Hence the frequencies of the combined

system, bn , within the two intervals, b*1 Q bn Q n and bn q b*2 , are increased, and the
remaining frequencies are decreased (as compared with the frequencies of the beam
without an oscillator). Because the condition b*1 Q nQ b*2 for each possible value of V1,
V2 and g1, is satisfied, the result obtained includes all cases of a beam with a
two-degree-of-freedom oscillator.

5.  

Exemplary numerical results are presented for a cantilever beam with one or two
oscillators attached. The numerical calculations comprise the first four frequencies derived
from free vibration of the beam and all additional frequencies derived from vibrations of
the attached spring–mass systems. The calculations are performed for r2 =0·0025 and
s2 =4r2. The dimensionless spring constants for all translational springs are assumed the
same: K=1000. The dependence of the eigenfrequencies of the combined system on an
attachment point of an oscillator to the beam, is presented in Figures 2 and 3.

The results shown in Figure 2(a) are obtained for a beam with a spring–mass system.
The vibration frequency of the spring–mass system (grounded oscillator) in this case is
V11 =5·0813 (the point of the dashed line on the b-axis). The frequencies of the combined
system for j1 q 0, lower than V11 are decreased, and higher than V11 are increased as
compared with the beam frequencies (the points of the solid lines on the b-axis). In these
and the next figures the solid lines apply to frequencies of the combined system derived

Figure 2. Frequency parameter values, bn , for the first modes of vibration of the cantilever versus the location
of an oscillator on the beam; (a) one-degree-of-freedom oscillator, M11 =1·5; (b) two-degree-of-freedom
oscillator, M11 =M11 =0·75; (c) three-degree-of-freedom oscillator, M11 =M12 =M13 =0·5.



1.0

12

0

5

11

10

8

6

4

3

2

1

0.2 0.4 0.6 0.8

7

9

β n

(a)

ξ1

1.0
ξ1

0.2 0.4 0.6 0.8

(b)

ξ1

1.00.2 0.4 0.6 0.8

(c)

ξ1

0.00.0

   362

Figure 3. As Figure 2, but for the cantilever beam with two masses oscillator additional mounted at the free
end of the beam, M21 =M22 =0·5.

from vibration of the beam and the dashed lines show the changes of the additional
frequencies, which are derived from free vibrations of the attached oscillators.

In Figure 2(b), the free vibration frequencies of a combined system consisting of a
Timoshenko beam and a two-degree-of-freedom oscillator, are presented. The frequencies
of the grounded oscillator, calculated from the equation (32), are b*1 =4·7501 and
b*2 =7·6865. The frequencies of the combined system within either of the two intervals
b*1 Q bn Q n or bn q b*2 (n=7·1861), are greater than or equal to the relevant beam
frequencies.

The effect of the location of three-degree-of-freedom oscillator attached to the beam on
vibration frequencies of the combined system is shown in Figure 2(c). In this case the
frequencies of the grounded oscillator are b*1 =4·4613, b*2 =7·4677 and b*3 =8·9769. The
inequality Q31 q 0, is satisfied in the three intervals b*1 Q bQ n1, b*2 Q bQ n2 and bq b*3 ,
where n1 =6·6874 and n2 =8·8011. The frequencies of the combined system in these
intervals are greater than or equal to the relevant beam frequencies (the remaining
frequencies are less than or equal to the relevant beam frequencies).

The vibration frequencies of the system consisting of a beam and two systems of masses
attached to it (frequency equation (31)), are shown in Figure 3. The first mass system is
established by a one- (Figure 3(a)), two- (Figure 3(b)) or three- (Figure 3(c))
degree-of-freedom oscillator. The other two-mass system is attached to the cantilever at
the free end of the beam. The vibration frequencies are shown as functions of the location
of the first mass system on the beam.

6. 

The solution in a closed form of the problem of free vibration of a Timoshenko beam
with attached multi-mass oscillators has been presented. Although the number of
oscillators considered in the numerical examples was limited to two, the solution can be
used for an arbitrary number of oscillators attached to the beam. The solution is obtained
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by using the Green function method and it includes all possible classical end conditions
of the beam.

The oscillators mounted to a beam can cause increases or decreases in the frequencies
of the combined system as compared with those of the beam without attached oscillators.
In the case of the beam with a spring–mass system attached, the frequencies of the system
lower than the spring–mass frequency are decreased, and the higher ones are increased
(except at discrete points when the frequencies are unchanged). The frequencies of a
combined system of two-mass oscillator attached to a beam, are decreased in the two finite
intervals. Similarly, the three-degree-of-freedom oscillator attached to a beam can cause
decreases in vibration frequencies that are within any of three finite intervals. The
remaining frequencies are increased as compared with the beam frequencies.
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